Szegedi Tudományegyetem TTIK Optikai és Kvantumelektronikai Tanszék

SZAKDOLGOZAT

Egy- és kétvonalas spektroszkópiai kettős rendszerek vizsgálata

Készítette: Kálmán Szilárd fizika BSc szakos hallgató

Témavezető: **Dr. Szalai Tamás** tudományos munkatárs

Konzulens: Mitnyan Tibor tudományos segédmunkatárs

Szeged, 2019

Tartalomjegyzék

Be	vezet	és		2	
1.	Elm	életi átte	ekintés	3	
	1.1.	Égitest	ek keringésének leírása	3	
		1.1.1.	Pályaelemek	4	
		1.1.2.	Kepler-törvények	4	
	1.2.	Radiáli	is sebesség	6	
		1.2.1.	Sebességamplitúdó	6	
	1.3.	Dopple	ppler-eltolódás		
		1.3.1.	Keresztkorreláció	8	
		1.3.2.	Vonalprofil-analízis	8	
		1.3.3.	Korrekciós tényezők	9	
		1.3.4.	Kalibráció	10	
2.	Az a	datok f	eldolgozása	12	
	2.1.	A kere	sztkorrelációs módszer	12	
	2.2.	A vona	llprofil-analízis	13	
3.	Erec	lményel	k	16	
	3.1.	V781 7	Fauri	16	
	3.2.	LS 503	39	17	
		3.2.1.	A PHOEBE használata	17	
		3.2.2.	LS 5039 – radiálissebesség-görbe	18	
4.	Össz	efoglalá	ás	19	
Kä	iszöne	etnyilvá	nítás	20	
Fü	ggelé	k		21	
Hi	vatko	zások		23	

Bevezetés

Az égitestek (és különösen a csillagok) megfigyelésének talán legkézenfekvőbb módja a fényességük mérése, avagy *fotometria*, s ennek megfelelően távolra visszanyúló történelme van az eljárásnak, az ókori szabadszemes megfigyelésektől a legmodernebb távcsöves mérésekig. Pusztán ezzel a módszerrel azonban nem lehet minden szükséges információhoz hozzájutni.

Csillagok tömegének pontos meghatározására például általában csak akkor van lehetőség, ha azok kettős, vagy többes rendszer tagjai. Ilyenkor a színképükben lévő vonalak¹ a közös tömegközéppont körüli keringés miatt periodikusan elmozdulnak, amiből az alább tárgyalt módon meghatározható a tömegük.

A dolgozatom tárgyát olyan kettős rendszerek képezik, melyeknél egy vagy két komponens vonalai látszanak. A kétvonalas spektroszkópiai kettősök olyan csillagok, melyeknek fényessége hasonló, míg az egyvonalasok "családjába" tartoznak azok a rendszerek, ahol az egyik komponens sokkal halványabb a másiknál, az exobolygórendszerek, illetve az egy csillag és egy kompakt objektum (fekete lyuk vagy neutroncsillag) által alkotott rendszerek is.

Motiváció, célkitűzés

Már régóta foglalkoztat a kérdés, hogy vajon egyedül vagyunk-e a Világegyetemben. A földi példából kiindulva az tűnik valószínűnek, hogy élet bolygókon létezhet, így exobolygórendszerek vizsgálata jó kiindulási pont lehet a kérdés megválaszolására.

Az első, másik fősorozati csillag körül felfedezett bolygót a spektroszkópiai módszerrel fedezték fel az 51 *Pegasi* körül (Mayor és Queloz, 1995), a dél-franciaországi Haute-Provence Obszervatórium 1,93 m-es távcsövére szerelt spektrográffal. Manapság ennél sokkal precízebb eszközökkel is végeznek ilyen típusú méréseket, úgy mint a HARPS (High Accuracy Radial Velocity Planet Searcher), vagy a Keck-HIRES (High Resolution Echelle Spectrometer) stb.

A dolgozatom eredeti célja tehát ilyen rendszrek vizsgálata lett volna, ám, mint kiderült, ilyen spektrumokhoz hozzájutni közel sem egyszerű. Ehelyett lehetőségem nyílt egy szoros kettős – a V781 Tauri –, valamint egy gammakettős² – az LS 5039 – spektrumát vizsgálni, s ez alapján a komponensek tömegeire vonatkozó megállapításokat tenni. Az exobolygórendszerek vizsgálata tehát eltolódott a jövőbe, azonban az ott (is) használatos radiálissebesség-módszerrel való ismerkedéshez ideálisak az alább tárgyalt rendszerek is.

A szakdolgozatom célja tehát egy– és kétvonalas spektroszkópiai rendszerek radiálissebességgörbéinek meghatározása, illetve elemzése.

¹A csillagok atmoszférája a folytonos színképből bizonyos hullámhosszú fotonokat elnyel, létrehozva ezzel a vonalas színképet.

²Olyan kettős rendszer, melynek egyik komponense egy kompakt objektum.

1. Elméleti áttekintés

Tekintettel a jó minőségű, új eredményeket, technikákat is tartalmazó magyar nyelvű anyag hiányára, az elméleti áttekintést Michael Perryman: *The Exoplanet Handbook* című könyve alapján készítettem (Cambridge University Press, 2011).

1.1. Égitestek keringésének leírása

1. ábra. Egy ellipszis és a főköre. Az F1 fókuszpont a rendszer tömegközéppontja, az F2 pedig az ún. üres fókuszpont. Az ábra a The Exoplanet Handbook 9. oldalán megtalálható alapján készült.

Az égitestek méretskálájánál a gravitációs erő az egyetlen kölcsönhatás, amellyel számolni kell a mozgásuk leírása során. A két objektum a közös tömegközéppontjuk körül az

$$r = \frac{a(1 - e^2)}{1 + e \cos \nu}$$
(1)

egyenlettel leírható ellipszis mentén kering. Itt *a* az ellipszis félnagytengelye, *e* az excentricitása, ν pedig a valódi anomália (azaz az ellipszis fókuszpontjától az adott égitesthez húzott egyenes és a félnagytengely iránya által bezárt szög, 1. ábra). A valódi anomálián túl beszélhetünk még excentrikus anomáliáról (*E*, 1. ábra), illetve közepes anomáliáról is (*M*). Ezekről részletesebben lehet olvasni a Dr. Szatmáry Károly, Dr. Székely Péter, Dr. Szalai Tamás és Dr. Szabó M. Gyula által létrehozott **Csillagászat** tananyagban³. Descartes-féle derékszögű koordináta-rendszerben ugyanezt az ellipszist az

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \tag{2}$$

összefüggés írja le. Belátható, hogy

$$e = \sqrt{\frac{a^2 - b^2}{a^2}}.$$
(3)

Csupán egy égitest keringési ellipszisének adatainak ismerete azonban nem elég a pálya pontos, térbeli leírásához, szükség van tehát további adatokra.

³http://astro.u-szeged.hu/oktatas/csillagaszat/5_Egi_mechanika/egi_mechanika.htm#id2491786

2. ábra. Az ellipszis helyzetére vonatkozó pályaelemek. Forrás: astro.u-szeged.hu

1.1.1. Pályaelemek

Az égi mechanikában minden keringés leírásához hat adatot (ún. pályaelemet) használnak, amelyek közül három magára az ellipszisre vonatkozik (a, e, i), kettő az ellipszis elhelyezkedésére (ω, Ω) (2. ábra), egy pedig egy időpontra, jellemzően a pericentrumon való áthaladás időpontjára (τ). A részletesebb magyarázatra szoruló fogalmak:

- Inklináció (i): az alapsík és a keringés síkja által bezárt szög, 0° ≤ i < 180° tartományon. Egy keringést akkor tekintünk *prográd*nak, ha i < 90°, *retrográd*nak pedig akkor, ha i > 90°.
- Felszálló csomó hossza (Ω): a csomóvonal (az alapsík és a pályasík metszete) és az alapirány szöge. A csomóvonal 2 pontban metszi az égitest pályáját, ezeket feszálló-, és leszálló csomópontoknak nevezzük.
- *Pericentrum hossza* (ω): a csomóvonal és a nagytengely szöge, a keringési síkban mérjük.

1.1.2. Kepler-törvények

A bolygómozgásra vonatkozó három Kepler-törvény:

- I.) A bolygók a Nap körül ellipszispályán mozognak, ennek egyik fókuszpontjában a Nap áll.
- II.) A Naptól a bolygókig húzott félegyenes ("vezérsugár") azonos idők alatt azonos területeket súrol.
- III.) A bolygók keringési periódusának négyzete egyenesen arányos a pályájuk félnagytengelyének köbével.

A (gravitációs) kéttestprobléma megoldása során mindhárom törvény megkapható, ami egyértelmű bizonyítéka az érvényességüknek tetszőleges M_1 és M_2 tömegű rendszerekre, így bármely csillag-csillag, vagy csillag-bolygó rendszerre is. A III. törvény ez alapján:

$$\frac{a^3}{P^2} = \frac{G}{4\pi^2}(M_1 + M_2),\tag{4}$$

ahol *P* a keringési periódus, $G = 6,67 \cdot 10^{-11} Nm^2 kg^{-2}$ pedig a gravitációs állandó. Ennek gyakorlatba történő átültetése két módon történhet: relatív-, és abszolút pályákkal (3. (a) és (b) ábrák).

A relatív leírásra vonatkozó egyenlet formailag teljesen megegyezik a (4) egyenlettel:

$$\frac{a_{rel}^3}{P_{rel}^2} = \frac{G(M_1 + M_2)}{4\pi^2},\tag{5}$$

ahol $a_{rel} = a_1 + a_2$ (Szalai, 2006). Ez gyakorlatilag az a szemlélet, ahol az egyik komponens kering a másik körül (azaz nem a közös tömegközéppont körül keringenek), és olyan esetekben használatos, ahol mindkét objektum látszik, hiszen ezek egymáshoz viszonyított helyzetéből számítható ki a komponensek tömege. Innen következik, hogy akkor menthető át csillag-bolygó rendszerre, ha a bolygó is látszik.

Abszolút keringés esetén úgy tekintjük a rendszert, hogy a két test a közös tömegközéppont körül kering. Ekkor:

$$\frac{a_1^3}{P_1^2} = \frac{GM'}{4\pi^2},\tag{6}$$

ahol

$$M' = \frac{M_2^3}{(M_1 + M_2)^2}.$$
(7)

Ilyen szemléletben az alábbi egyenlőségek állnak fenn: $a_1 : a_2 : a_{rel} = M_2 : M_1 : (M_1 + M_2)$, $e_{rel} = e_1 = e_2$, valamint $P_{rel} = P_1 = P_2$.

1.2. Radiális sebesség

A csillagok sebessége két komponensből tevődik össze: az érintő irányú v_t sebességből, illetve a v_r radiális sebességből (4. ábra). Előbbi megkapható a megfigyelőtől mért d távolság, valamint a μ sajátmozgás szorzataként.

4. ábra. Az érintő – illetve látóirányú sebességek szemléltetése. Forrás: *en.wikipedia.org/wiki/Proper_motion*

Azt mondhatjuk tehát, hogy egy csillag tényleges sebessége:

$$v_S = \sqrt{v_r^2 + v_t^2}.\tag{8}$$

A radiális sebességben bekövetkező (periodikus) változásokból lehet az alábbiakban tárgyaltak szerint következtetni a csillag kísérőjének tulajdonságaira – elsősorban tömegére⁴.

1.2.1. Sebességamplitúdó

Tekintsük most egy csillag látóirányú mozgását (legyen ez az x-irány). Belátható, hogy:

$$x(t) = r(t)\sin i\sin(\omega + \nu), \tag{9}$$

ahol r(t) a csillag távolsága a tömegközépponttól. Ezt deriválva kapható meg a látóirányú – más néven radiális – sebesség:

$$\dot{x}(t) \equiv v_r = \sin i \cdot (\dot{r}\sin(\omega + \nu) + r\dot{\nu}\cos(\omega + \nu))$$
(10)

Felhasználva az (1) egyenletet, azt kapjuk, hogy:

$$v_r = K_r(\cos(\omega + \nu) + e\cos(\omega)), \tag{11}$$

ahol

$$K_r = \frac{2\pi a_1 \sin i}{P\sqrt{1 - e^2}}$$
(12)

a sebességamplitúdó. A látóirányú sebesség excentricitás és pericentrumhossz-függését hivatott szemléltetni az 5. ábra.

Behelyettesítve a (12) egyenletbe a (6) egyenletet, a sebességamplitúdó egy alternatív formáját kaphatjuk:

$$K_r^2 = \frac{G}{1 - e^2} \frac{1}{a_1 \sin i} \mathcal{M},\tag{13}$$

⁴Megjegyzendő, hogy sajátmozgásban bekövetkező változásokból szintén lehet kísérő jelenlétére következtetni, ez az asztrometriai módszer.

5. ábra. Radiálissebesség – fázis görbék különböző e és ω értékekre. Forrás: astro.u-szeged.hu

ahol

$$\mathscr{M} = \frac{M_2^3 \sin^3 i}{(M_1 + M_2)^2}.$$
(14)

Amennyiben $M_2 \ll M_1$ (ami bizonyos egyvonalas esetekben teljesül):

$$\mathscr{M} \simeq \frac{M_2^3 \sin^3 i}{M_1^2}.$$
(15)

Az *M* mennyiséget szokás tömegfüggvénynek nevezni.

Tehát ha a (12) egyenletből meghatározzuk $a_1 \sin i$ -t (és M_1 -et meg tudjuk becsülni), a kisebb tömegű komponensről is nyerhetünk információt, mely azonban egy sin *i* szorzótényezővel bizonytalan marad, az inklinációt ugyanis nem lehet meghatározni a látóirányú sebességek méréséből. Ebből következik, hogy exobolygók tömegének megadásakor minimális tömegről szokás beszélni. A hat pályaelem közül ezen felül Ω nem határozható meg radiálissebességmérésekből.

Kétvonalas rendszerek esetén mindkét komponensre kinyerhető a radiálissebesség-görbe, így két sebességamplitúdóról beszélhetünk, jelöljük ezeket K_{r1} és K_{r2} -vel. Szoros kettősök esetén jó közelítéssel mondhatjuk azt, hogy körpályán keringenek (e = 0). Ekkor a (12) egyenlet az alábbi alakra egyszerűsödik:

$$K = \frac{2\pi a \sin i}{P}.$$
 (16)

 K_{r1} és K_{r2} segítségével definiálható az ún. tömegarány:

$$q = \frac{K_{r1}}{K_{r2}} = \frac{a_1}{a_2} = \frac{M_2}{M_1},\tag{17}$$

mely egy 0 és 1 közé eső érték.

1.3. Doppler-eltolódás

Amennyiben egy test v sebességgel, Θ szög alatt mozog a megfigyelőhöz képest, a $\Delta \lambda = \lambda - \lambda_0$ hullámhosszeltolódás arányos ezzel a sebességgel. Itt λ a megfigyelt hullámhossz (a csillag színképében fellelhető számos abszorpciós vonal valamelyikének hullámhossza), λ_0 pedig a laboratóriumi körülmények között mért hullámhossz (természetesen ugyannak a vonalnak a hullámhossza). A két érték között a relativisztikus Doppler-eltolódás teremt kapcsolatot:

$$\lambda = \lambda \frac{1 + \beta \cos \Theta}{\sqrt{1 - \beta^2}},\tag{18}$$

ahol $\beta = v/c$. Amennyiben $v \ll c$, valamint $\Theta \ll \pi/2$:

$$v_r = v \cos \Theta \simeq \frac{\Delta \lambda}{\lambda_0} c.$$
 (19)

Megegyezés alapján $v_r < 0$ akkor, ha felénk mozog, illetve $v_r > 0$ akkor, ha tőlünk elfelé mozog az égitest.

A csillagok színképéből a radiális sebességük előállítását kétféleképpen vittem végbe a szakdolgozatom elkészítése során: keresztkorrelációval, valamint a vonalprofilok analízisével.

1.3.1. Keresztkorreláció

A keresztkorreláció egy jelfeldolgozásban használatos integrálművelet, mely két jel hasonlóságát mutatja meg, az egymáshoz viszonyított eltolódottságuk alapján.

Legyen f és g két folytonos függvény. A keresztkorrelációt ekkor

$$(f \star g)(\tau) \stackrel{\text{\tiny def}}{=} \int_{-\infty}^{\infty} f^*(t)g(t+\tau)dt, \tag{20}$$

ahol f^* az f függvény komplex konjugáltja, τ pedig az eltolódottság (vagyis, f egy t-kor fellépő tulajdonsága g-ben $t + \tau$ -kor jelenik meg). Ennek szemléltetésére szolgál a 6. ábra.

Ezt átemelve a radiális sebesség meghatározásának problémájára:

$$C(\varepsilon) \propto \int_{-\infty}^{\infty} S(v)M(v-\varepsilon)dv,$$
 (21)

ahol S a mért-, M az összehasonlító spektrum (vagyis egy, az adott csillagéhoz hasonló spektrálosztályú, ismert és időben állandó radiális sebességű csillag spektruma (Mitnyan, 2014)), vsebességtérben kifejezve. A cél ε meghatározása C minimalizálásával.

1.3.2. Vonalprofil-analízis

Keresztkorrelációra akkor van igazán lehetőség, ha a vizsgált színképtartományon sok keskeny spektrumvonal található, ami például az LS 5039 általam (is) használt adatsorai esetében nem áll fenn. Ilyen esetekben pl. a vonalprofil-analízis technikája alkalmazható. Ennek során a kialakuló színképvonal alakjára – ún. *Voigt-profil* – illesztett görbe segítségével, a (19) egyenletből határozzuk meg a radiális sebességet.

A Voigt-profil alakja (egy olyan görbére, melynek csúcsa nullában van) egy

$$G(x) = a \cdot e^{\frac{x^2}{2\sigma^2}} \tag{22}$$

6. ábra. A keresztkorreláció szemléltetése. Forrás: https://en.wikipedia.org/wiki/Cross-correlation

alakú Gauss-görbe és egy

$$L(x) = b \cdot \frac{\gamma}{\left(x^2 + \left(\frac{\gamma}{2}\right)^2\right)}$$
(23)

alakú Lorentz-görbe konvolúciójaként áll elő (a, b, σ és γ konstansok):

$$V(x) = \int_{-\infty}^{\infty} G(x', \sigma) L(x - x', \gamma) dx'.$$
(24)

1.3.3. Korrekciós tényezők

A mért $\Delta\lambda$ sosem tisztán a csillag(ok) periodikus mozgásából származik: szerepet játszanak a Föld mozgásának hatásai, a gravitációs vöröseltolódás, valamint a csillag térbeli mozgása is.

A Föld mozgásának hatásai: ahhoz, hogy ne hamis értékeket kapjunk, egy nyugalomban lévő, vagy egyenes vonalú egyenletes mozgást végző ponthoz kell viszonyítanunk a kapott spektrumot. Ilyen pl. a Naprendszer tömegközéppontja (a kéttestprobléma megoldásából ugyanis egyértelműen látszik, hogy a tömegközéppont egyenes vonalú egyenletes mozgást végez). A Föld mozgásának hatásaira (beleértve a többi bolygó által gyakorolt gravitációs perturbációit is) megfelelően korrigált adatokból 1 ms^{-1} pontosság várható.

Gravitációs vöröseltolódás: egy csillag gravitációs vöröseltolódásának származéka:

$$v_r \simeq \frac{GM_\star}{R_\star c},\tag{25}$$

akkor, ha $R_{\star} > R_S$, vagyis, ha a csillag sugara nagyobb a Schwarzschild-sugárnál ($R_S \equiv 2GM_{\star}/c^2$) – newtoni határeset. Ez általában elhanyagolható.

A csillag mozgásának hatása: a csillag-bolygó rendszer tömegközéppontja egyenes vonalú egyenletes mozgást végez, ami egy konstans eltolódást okoz a radiális sebességekben, ezt "gamma-sebességnek" (v_{γ}) nevezzük (Szalai, 2006). Megjegyzendő továbbá, hogy pontos radiális sebesség mérések során a csillag egyéb felszíni tulajdonságai (pl. foltok) is szerepet játszanak, néhány ms^{-1} hibát jelentenek.

1.3.4. Kalibráció

Nagy pontosságú radiális sebességek meghatározására nagy felbontóképességű ($R \equiv \lambda/\Delta\lambda \sim 50000 - 100000$) echelle spektrográfokat alkalmaznak, 450 - 700 nm-es tartományban. A spektrum felvételének fontos részét képezi a hullámhosszak meghatározása. Ehhez össze kell vetni a spektrumot ismert hullámhosszú vonalakkal.

Gázcellák Az első eszközök hidrogén-fluoridot használtak, mely mérgező és korrodál, azonban a vonalai megfelelő távolságokra vannak egymástól, valamint a természetes vonalki-szélesedés is hasonló egy tipikus csillag színképében megtalálhatóhoz.

Mára a jód a legelterjedtebb ilyen célokra. Erős abszorpciós együtthatója van, és elég csupán néhány *cm*-es úthossz a kívánt eredményhez. A cellát a fényútba, éppen a spektroszkóp nyílása elé kell helyezni. Éles abszorpciós vonalak rakódnak rá a csillag spektrumára, ez az, ami lehetővé teszi a kalibrációt.

Tórium-argon lámpa Gázcella helyett használható egy ThAr spektrállámpa is. Ilyenkor két optikai szálat használnak, az egyik a csillag fényét hordozza, a másik pedig vele egyidejűleg vagy a lámpa fényét, vagy az égi háttérét. Ezen módszer előnye a sok emissziós vonal az optikaitól az infravörösig terjedő spektrumon.

Frekvenciafésű Olyan kalibrátorral, amely a látható és az infravörös tartományt is lefedi, valamint azonos vonaltávolságokat és vonalintenzitásokat biztosít, sokkal nagyobb pontosság érhető el. Ezt a lehetőséget nyújtják módusszinkronizált femtoszekundumos "frekvenciafésűk" (7. ábra). Ez a módszer egyetlen lézerimpulzus üregben történő hordozóhullámként való keringetésén alapul. Minden kör után az impulzus egy másolata elhagyja a közeget egy kimenő tükrön keresztül, folyamatos "impulzusvonatot" létrehozva ezzel. Az energiaveszteség pótlásáról a sugárzó közegben fellépő indukált emisszió gondoskodik.

7. ábra. A frekvenciafésűk működési elve. A felső képen látható "impulzusvonat" hozza létre a Fourier-térben látható frekvenciafésűt. Minél rövidebb az impulzusok burkolójának τ időtartama, annál szélesebb a fésű. A lézerrezonátorban található diszperzív elemek miatt különbség lép fel a csoport– és fázissebességek között, amitől a hordozóhullám a burkolótól impulzusonként $\Delta \varphi$ -vel eltolódik. Emiatt a Fourier-térben a fésű $\nu_{ceo} = \Delta \varphi / 2\pi T$ -vel tolódik el. Forrás: *The Exoplanet Handbook, 20. oldal.*

A fésű abszolút frekvenciáját a

$$\nu = \nu_{ceo} + n\nu_{rep} \tag{26}$$

egyenlet adja, ahol $\nu_{rep} = T^{-1}$ az ismétlési frekvencia (T idő alatt ér körbe az impulzus), ν_{ceo} a hordozó-burkoló offset-frekvenciája, n pedig egy természetes szám. A ν_{rep} és a ν_{ceo} is szinkronizálható az atomórákhoz. Ettől az eljárástól $0,01 m s^{-1}$ alatti pontosság várható.

2. Az adatok feldolgozása

2.1. A keresztkorrelációs módszer

Én mindkét kettős esetén előkészített spektrumokat kaptam kézhez, melyekből az IRAF (Image Reduction and Analysis Facility) nevű programcsomag segítségével állítottam elő a keresztkor-relációs profilokat, ahonnan pedig *gnuplot* segítségével készültek el a radiálissebesség-görbék.

A *.fits* kiterjesztésű képeken a spektrumot egy vékony, váltakozva sötét-világos csík jelenti. Ebből egydimenziós spektrumokat állítunk elő – hullámhossz-intenzitás értékpárokkal –, én már ilyen adatokkal dolgoztam. Az IRAF *noao.rv.fxcor* nevű taszkjával elvégezzük erre a keresztkorrelációt, azaz (a megfelelő összehasonlító csillag segítségével) képenként egy, sebességet és korrelációt tartalmazó adatsort kapunk. Kétvonalas rendszer esetén első lépésként az értékes információt tartalmazó adatsorok kiválasztása volt a cél, vagyis azoké, melyekből mindkét csillagra vonatkozó radiális sebesség kinyerhető (8. ábra (a) és (b) panelek). Tegyük fel, hogy a 8(c) és 8(d) ábrákon látható rendszer megfigyelése az oldal aljának irányából történik. Ha a v_1 és v_2 sebességvektorok (közel) párhuzamosak a megfigyelés irányával, akkor a radiális sebességeik jelentősen különböznek egymástól, azaz a (b) panelen látható keresztkorrelációs profil nyerhető ki a színképből. Idővel azonban a két sebességvektor (közel) merőleges lesz a látóirányra, vagyis az (a) panelen látható profilnak megfelelő spektrum detektálható.

Következő lépésként az összehasonlító csillag radiális sebességét hozzáadtam az egyes pontokhoz, ezzel figyelembe véve azt, hogy a keresztkorrelációhoz nem egy nyugalomban lévő mintacsillagot használtam fel.

A szétválogatott profilokra az

$$f(v_r) = a_1^2 \cdot e^{-\frac{(v_r - b_1)^2}{c_1}} + a_2^2 \cdot e^{-\frac{(v_r - b_2)^2}{c_2}}$$
(27)

egyenletnek megfelelő, két Gauss-görbe összegéből előálló függvényt illesztettem. Az illesztéshez szintén a *gnuplot* nevű programot használtam, amely a nemlineáris legkisebb négyzetek ún. Levenberg-Marquardt-féle algoritmusát használja. Az exponenciális rész előtti kitevő azért van négyzeten, hogy semmiképpen se találhasson a program egy – az ábra tetejéről nézve – konvex és egy konkáv görbe összegeként előálló függvényt. Ezzel a módszerrel a 9. ábrán látható görbék kaphatóak. Ez alapján látszik az is, hogy a keresett sebességek meghatározásához nem lenne elég csupán leolvasni a görbék maximumának helyzetét, ugyanis a profilok szélsőértékét a két komponens hatásának összege adja.

A sebességek meghatározásához tehát azt kell tudnunk, hogy hol van az egyes görbéknek a maximuma, amit az

$$\frac{d}{dv_r} \left(a_1^2 \cdot e^{-\frac{(v_r - b_1)^2}{c_1}} \right) = 0$$

$$\frac{d}{dv_r} \left(a_2^2 \cdot e^{-\frac{(v_r - b_2)^2}{c_2}} \right) = 0$$
(28)

egyenletekből kaphatunk (matematikailag szükség lenne a második derivált monotonitásának ellenőrzésére is, azonban az ilyen Gauss-görbéknek csak egy szélsőértékük van – a maximumuk). Innen azt kaphatjuk, hogy a keresett radiális sebességek éppen a b_1 és b_2 értékek lesznek.

Ezt követően a *fits* képek fejlécéből kiolvasott heliocentrikus Julián-dátumokból előállítottam a radiális sebességek fázisdiagramját, mások által meghatározott periódusértékek segítségével. Végül a fázis–sebesség pontokra illesztettem a (11) egyenletnek megfelelő két görbét. Ezen görbék amplitúdójának meghatározása volt a cél.

(c) Sematikus ábra a nem használható keresztkorre- (d) Sematikus ábra a hasznos keresztkorrelációs lációs profilhoz vezető konfigurációhoz.

8. ábra. Példa a V781 Tau hasznos információt tartalmazó és nem tartalmazó keresztkorrelációs profiljára, valamint az ezekhez rendelhető konfigurációk, alulról történő megfigyelést feltételezve. *https://www.chegg.com/homework-help/questions-and-answers/binary-star-system-two-stars-orbit-common-center-mass-shown-figure-figure-1-part-r2-8r1-r-q13421341* alapján.

Egyvonalas rendszereknél a fentebb vázoltakkal azonosan történik minden, leszámítva, hogy nem kell kiválogatni az értékes információt hordozó keresztkorrelációs profilokat, illetve az $f(v_r)$ függvény csupán egyetlen Gauss-görbére módosul.

2.2. A vonalprofil-analízis

Az előkészített – *fits* képeken tárolt – spektrumokból az IRAF *noao.onedspec.wspectext* taszkjának segítségével lehet szöveges jellegű, hullámhosszat és intenzitást tartalmazó fájlokat előállítani.

Az így kapott adatpontokat ábrázolva a kirajzolódó, "mélyebb" vonalak minimumának helyzete meghatározható, ha a spektrumvonalat egy megfelelő görbével leillesztjük. A keresztkorrelációs módszerhez hasonlóan az illesztéshez itt is *gnuplot*-ot használtam. A vonalra szintén lehetne Gauss-görbét illeszteni, azonban a beépített voigt(x, y) függvény szebben illeszkedik⁵, tehát az alkalmazott függvény (tekintettel a spektrum kontinuumnormált mivoltára)

$$I(\lambda) = 1 - a \cdot voigt(x - b, c) \tag{29}$$

⁵A gnuplot-ba beépített voigt(x, y) függvény jól közelíti a (24) egyenlettel megadható görbét.

9. ábra. A V781 Tau keresztkorrelációs profilja (piros) egy adott időpontban, a rá illesztett $f(v_r)$ görbe (királykék), valamint az ezt alkotó 2 Gauss-görbe (lila és ciánkék).

volt (lásd 10. ábra). Az itt látható *b* paraméter⁶ megfelel a (19) egyenletben használatos λ -nak. Ismerve tehát λ_0 -t, a radiális sebesség meghatározható.

10. ábra. Példa egy spektrumvonalra illesztett görbére az LS 5039 adatsoraiból.

Tekintettel arra, hogy a spektrumok igen zajosak voltak, az illesztés megkezdése előtt "simítottam" rajtuk úgy, hogy – a hullámhossz szerint – hármasával felosztva azokat, csak – az intenzitás szerinti – mediánhoz tartozó értékeket tartottam meg. Ennek kivitelezéséhez az Rprogramcsomaghoz folyamodtam.

⁶A vonalak tényleges alakja itt egyáltalán nem számít, csupán az, hogy a minimumhelyük hol van, így a többi paraméterrel nem foglalkoztam különösebben.

Mindkét módszer esetén a Föld mozgására külön kell korrigálni. Ehhez egy weboldal⁷ nyújtott segítséget, mely Wright és Eastman (2014) alapján, a kérdéses objektum égi koordinátái, az obszervatórium földrajzi helyzete és tengerszint feletti magassága, valamint a mérések elkészültének időpontja alapján kiszámítja a szükséges korrekciós tényezőket, melyeket hozzáadva a (19) segítségével számított látóirányú sebességekhez, a tényleges radiális sebességek megkaphatóak.

⁷http://astroutils.astronomy.ohio-state.edu/exofast/barycorr.html

3. Eredmények

3.1. V781 Tauri

A V781 Tau ($\alpha_{2000} = 5^h 50^m 13, 13^s, \delta_{2000} = 26^\circ 57' 43, 36''$) egy kevésbé tanulmányozott érintkező kettőscsillag 0, 34 napos periódussal. A radiálissebesség–görbe előállításához felhasznált epocha és periódus: $t_0 = HJD2457016, 32177, P = 0, 34490986$ nap (Li és mtsai, 2016). A keresztkorrelációhoz szükséges másik csillag (az ún. radiálissebesség-sztenderd) a β Canum Venaticorum volt. A meghatározott radiális sebességeket a 3. táblázat tartalmazza.

A kapott radiálissebesség-görbék a 11. ábrán láthatóak. A görbék illesztése során meghatá-

11. ábra. A két komponens mért radiálissebesség-értékei és azok hibái (piros és királykék), a rájuk illesztett görbék (lila és ciánkék), valamint a "gamma-sebesség" (zöld).

roztam a két sebességamplitúdót, valamint a gamma-sebességet, ezeknek értékeit az 1. táblázat tartalmazza.

$K_{r1} \pm \Delta K_{r1} [\text{km s}^{-1}]$	$K_{r2} \pm \Delta K_{r2} [\text{km s}^{-1}]$	$v_{\gamma} \pm \Delta v_{\gamma} [\mathrm{km} \mathrm{s}^{-1}]$
$-85,706 \pm 2,550$	$228,376 \pm 1,567$	$18,888 \pm 1,448$

1. táblázat. A V781 Tau mért sebességamplitúdói és gamma-sebessége.

A tömegarány ekkor a (17) egyenlet alapján:

$$q = \frac{|K_{r1}|}{K_{r2}} = 0,375 \pm 0,011$$

Kallrath és mtsai (2006) a tömegarányt $0,405 \pm 0,011$ -nek határozták meg. Az 1. táblázatban feltüntetett hibák csupán a keresztkorrelációs-profilok illesztéséből származnak. További hibaforrások az alacsony jel/zaj, egy esetleges harmadik komponens a rendszerben, melynek vonalai halványak, ezért – bár hatásukat nem lehet egyértelműen kimutatni – az említett profilokat torzítják, valamint az ehhez hasonló érintkező kettőscsillagok gyors forgásából és/vagy keringéséből származó jelentős rotációs vonalkiszélesedés. Mindezeket figyelembe véve elmondható, hogy az általam kapott tömegarány hibahatáron belül megegyezik a Kallrath-ék által kapottal.

3.2. LS 5039

Az LS 5039 ($\alpha = 18^{h}26^{m}15, 06^{s}, \delta = -14^{\circ}50'54, 26''$) a Luminous stars in the Southern hemisphere katalógus elemeként került nyilvántartásba (Stephenson és Sanduleak, 1971), és azóta alapos tanulmányozásnak vetették alá. Szerepelt többek között a témavezetőm Ph.D. értekezésében (Szalai, 2013) is, én az általa használt adatok alapján, az abban bemutatott módszerektől kissé eltérően igyekeztem előállítani az ott publikálthoz hasonló radiálissebesség-görbét. Érthető módon az alábbiakban tényként közölt fogalmak és mennyiségek forrása ez az értekezés.

Az LS 5039 irányából röntgen-, valamint gamma-tartománybeli sugárzás is érkezik, ez utóbbinak következtében nevezik ezt a kettőscsillagot gamma-kettősnek. Ezek feltehetőleg egy nagy tömegű csillagból, valamint egy kompakt objektumból állnak, amely körül kialakuló akkréciós korong az említett sugárzás forrása. Felmerülő kérdés, hogy vajon neutroncsillag, vagy fekete lyuk-e ez az objektum, amire választ a tömegének meghatározása nyújthat.

A 2.2. alfejezetben leírt módon állítottam elő a radiális sebességeket, a He II (egyszeresen ionizált hélium) két vonalának (4685,81 Å, 5411,52 Å) felhasználásával. Ez a módszer távol áll az ideálistól, tekintettel arra, hogy igen kicsi változások a *voigt*-görbe minimumának helyzetében jelentős változásokat jelentenek a sebességek értékeiben, valamint arra is, hogy csupán két vonal állt rendelkezésemre.

A fázisdiagram előállításához felhasznált epocha és periódus: $t_0 = HJD2455017, 08$, valamint P = 3,906 nap. A radiálissebesség-görbe illesztése itt lényegesen összetettebb, mint a V781 Tau esetében, ugyanis ennél az egyvonalas kettősnél az excentricitás nem 0. Ennek a megvalósításához egy számomra teljesen új programot, a PHOEBE-t használtam (Prša és Zwitter, 2005).

3.2.1. A PHOEBE használata

A *PHysics Of Eclipsing BinariEs* egy kettőscsillagok modellezésére alkalmas szoftver, mely a széleskörben elterjedt Wilson-Devinney-kódra épül (Wilson és Devinney, 1973). Én a dolgozatom során a PHOEBE legacy-t használtam (*1.0* előtti verziót), ez ugyanis rendelkezik grafikus kezelőfelülettel is, szemben a *2.0*-val és *2.1*-gyel, melyek csak *pyhton*-on keresztül használhatók.

A PHOEBE lehetőséget nyújt szintetikus fénygörbék és radiálissebesség-görbék előállítására, emellett lehetőség van benne mérési pontokon vett optimalizálásra, azaz illesztésre is, amihez az ún. *Nelder-Mead downhill simplex* módszert alkalmazza (Nelder és Mead, 1965).

Ez a program két– vagy három oszlopos fájlokat képes kezelni, mégpedig szigorú formalizmus mellett: az első oszlop idő, vagy fázis lehet, a második radiális sebesség vagy fényesség, a harmadik lehet üres, tartalmazhat súlyokat, vagy a mért értékek szórásait.

Én a radiális sebességre vonatkozó adatok alapján az epochát és periódust fix paraméterként kezelve, a fázistolást szabad változóként használva információt nyertem a félnagytengelyről, a tömegarányról, a gamma-sebességről, a pericentrum hosszáról, valamint az excentricitásról és mindemellett a két komponens tömegéről is (lásd alább).

Az illesztés sikerességéhez a meghatározni kívánt paraméterek kezdeti értékeinek minél pontosabb megadása szükséges. A *fitting* ablakot kiválasztva a *Calculate*, valamint az *Update all* gombokra felváltva kattintva lehet a tényleges optimalizálást elvégezni. Mindeközben az *RV*

$A_{rel} [R_{\odot}]$	$v_{\gamma} [\mathrm{km} \mathrm{s}^{-1}]$	ω [°]	e	$M_1 [M_\odot]$	$M_2 [M_\odot]$
$30,96^{+1,43}_{-1,48}$	$0, 28 \pm 1, 41$	$250,96 \pm 24,06$	$0,32\pm0,1$	$23, 36^{+3,24}_{-3,1}$	$2,79^{+0.53}_{-0.51}$

2. táblázat. Az LS 5039 gammakettős keringésének fizikai paraméterei.

Plot ablakban láthatóvá is tehető a kapott görbe. Tapasztalataim szerint – a program lefagyását elkerülendő – célszerű az illeszteni kívánt paramétereket egyesével optimalizálni első körben.

3.2.2. LS 5039 – radiálissebesség-görbe

Ahogy már korábban említettem, az egyes időpontokhoz tartozó radiális sebességeket én két He II vonal alapján állítottam elő, bizonytalanságként pedig ezek szórását vettem. A görbe illesztésénél ez utóbbit figyelmen kívül hagytam. A kapott radiálissebesség-görbe a 12. ábrán látható.

12. ábra. Az LS 5039 meghatározott radiális sebességei és ezek hibái (pirossal), valamint a rájuk illesztett görbe (királykékkel). A jobb láthatóság kedvéért két fázist ábrázoltam. A felhasznált adatokat a 4. táblázat tartalmazza.

Fotometriai megfontolások alapján a pályainklinációnak kisebbnek kellene lennie 30° -nál (Szalai, 2013), illetve a főkomponens – mely egy forró O csillag – tömege $M_1 = 22, 9^{+3,4}_{-2,9} M_{\odot}$. A PHOEBE-n belül a tömegek módosítására csakis indirekt módon, a (4) és (17) egyenleteken (jelen esetben tehát a félnagytengelyen és tömegarányon) át van lehetőség. Vizsgálataim során $27^{+3}_{-3,5}$ -os inklinációk mellett határoztam meg a rendszer néhány fizikai paraméterét (közben a főkomponens tömegét igyekeztem a megadott tartományra szorítani). A kapott értékek a 4. táblázatban láthatóak.

Amint az a 12. ábrán látható, a mért pontoknak igen jelentős szórása van, ez megnyilvánul a meghatározott paraméterek hibájában is. Végső soron a cél a kompakt objektum tömegének – ezáltal pedig mivoltának – meghatározása volt. Neutroncsillagok nagyjából 3 M_{\odot} alatt léteznek,

vagyis, az általam meghatározott tömeg alapján ez nagyobb valószínűséggel neutroncsillag, azonban a fekete lyuk opció sem zárható ki teljes bizonyossággal.

4. Összefoglalás

A dolgozatomban bemutatom a csillagászat egyik legfontosabb módszerének, a radiálissebességanalízisnek alapjait. Ennek során az égitestek színképében megtalálható vonalak apró elmozdulásaiból határozzuk meg a látóirányú sebességüket. Ezt a sebességet ismerve az idő függvényében előállítható a radiálissebesség-görbe, melynek paramétereiből azután meghatározhatóak az objektumok bizonyos tulajdonságai, mint például a tömegarány (kettőscsillagok esetén).

Munkám során megismerkedtem az eljárás gyakorlatba történő átültetésének két ágazatával: a keresztkorrelációs módszerrel, valamint a vonalprofil-analízissel. Előbbi megvalósításához az IRAF nevű programcsomag *fxcor* taszkjához fordultam, míg utóbbit (saját) *gnuplot* szkriptekkel vittem végbe. Az így kapott idő–sebesség adatpárokból mások által meghatározott keringési periódus segítségével fázis–sebesség adatsorokat állítottam elő, amelyekre végül radiálissebesség–görbéket illesztettem, a V781 Tau esetén *gnuplot*-tal, az LS 5039 esetén pedig PHOEBE-vel.

A V781 Tauri kétvonalas spektroszkópiai kettőscsillag esetén a cél a két komponens tömegarányának meghatározása volt. A kapott $q = 0,375 \pm 0,011$ -es érték hibahatáron belül megegyezik a szakirodalomban elfogadott értékkel.

Az LS 5039 egyvonalas spektroszkópiai kettős esetén a cél a forró főkomponens körül keringő kompakt objektum tömegének (ezáltal pedig neutroncsillag vagy fekete lyuk mivoltának) meghatározása volt. Az erre kapott $M_2 = 2,79^{+0.53}_{-0.51} M_{\odot}$ érték alapján valószínűleg neutroncsillag lehet, de azt sem lehet kizárni, hogy fekete lyuk lenne.

Köszönetnyilvánítás

Köszönettel tartozom témavezetőmnek, dr. Szalai Tamásnak, a dolgozat elkészítése során adott rengeteg tanácsért, trükkért, a végtelen türelemért, amellyel a kérdéseimre válaszolt, illetve az adatsorokhoz való hozzáférés biztosításáért. Köszönet illeti továbbá konzulensemet, Mitnyan Tibort, a technikai jellegű tanácsokért, valamint az adatsorokhoz történő hozzájutás biztosításáért.

Függelék

Fázis	$v_{r1} \pm \Delta v_{r1} [\text{km s}^{-1}]$	$v_{r2} \pm \Delta v_{r2} [{\rm km} {\rm s}^{-1}]$
0,652	$225,\!585 \pm 4,\!076$	$-30,721 \pm 2,892$
0,712	$272,310 \pm 2,102$	$-21,831 \pm 1,877$
0,743	$288,723 \pm 1,780$	$-32,769 \pm 1,519$
0,773	$285{,}572 \pm 2{,}200$	$-25,\!665 \pm 2,\!017$
0,805	$272,\!988 \pm 2,\!469$	$-25,\!816 \pm 2,\!067$
0,866	$254{,}894\pm2{,}428$	$-11,\!649 \pm 1,\!873$
0,151	$-134,\!671 \pm 1,\!591$	$116,\!201\pm1,\!896$
0,182	$-149,224 \pm 1,032$	$129,\!242 \pm 1,\!233$
0,212	$-158,398 \pm 1,221$	$143,\!556 \pm 1,\!376$
0,242	$-165,\!603 \pm 1,\!345$	$136,\!301 \pm 1,\!490$
0,273	$-167,\!114 \pm 0,\!947$	$136,\!942 \pm 1,\!103$
0,305	$-157,\!828 \pm 1,\!246$	$140,\!214\pm1,\!321$
0,335	$-146,\!495 \pm 1,\!235$	$134,\!266 \pm 1,\!452$
0,366	$-126,\!228 \pm 1,\!593$	$130,\!543 \pm 1,\!822$

3. táblázat. A V781 Tau radiálissebesség-görbéjének elkészítéséhez meghatározott adatok.

Fázis	$v_{r1} [{\rm km} {\rm s}^{-1}]$	$\Delta v_r [\mathrm{km} \mathrm{s}^{-1}]$
0,992	-25,670	10,158
0,003	-6,137	5,497
0,016	-27,141	9,967
0,027	-5,306	4,666
0,045	-5,583	4,943
0,059	-0,597	0,043
0,236	23,170	3,976
0,247	15,195	7,518
0,258	15,512	15,512
0,269	17,240	12,122
0,280	7,713	8,353
0,291	22,249	12,652
0,303	13,576	5,259
0,314	35,985	4,962
0,486	-1,369	10,787
0,504	4,389	5,029
0,515	6,605	7,245
0,527	-0,597	0,043
0,538	4,003	10,401
0,549	7,713	8,353
0,743	-21,749	13,439
0,754	-13,619	4,662
0,772	-2,750	1,088
0,783	-8,594	8,040
0,794	-13,201	14,309
0,806	-24,133	5,297
0,817	-16,545	7,127
0,131	19,413	14,934
0,142	-0,597	0,043
0,153	21,227	10,351
0,372	14,084	14,724
0,384	8,821	9,461
0,395	16,023	16,663
0,641	5,758	5,758

4. táblázat. Az LS 5039 radiálissebesség-görbéjének elkészítéséhez meghatározott adatok.

Hivatkozások

- [1] Kallrath J. *et al.*: 2006, V781 Tauri: a W Ursae Majoris binary with decreasing period, A&A, 452, 959
- [2] Li K. et al.: 2016, The active W UMa type binary star V781 Tau revisited, Ap&SS, 361, 63
- [3] Nelder, J. A. & Mead, R.:1965, A simplex method for function minimization, Comput. J.,7, 308
- [4] Mayor M. & Queloz D.: 1995, A Jupiter-mass companion to a solar-type star, Nature, 378, 355
- [5] Mitnyan, T.; 2014: A VW Cephei érintkező kettőscsillag periódusváltozásának és felszíni aktivitásának vizsgálata, TDK-dolgozat, SZTE
- [6] Perryman, M.; 2011: The Exoplanet Handbook, 9-12, 16-20, Cambridge University Press
- [7] Prša, A. & Zwitter, T.: 2005, A Computational Guide to Physics of Eclypsing Binaries. I. Demonstrations and Perspectives, ApJ, 628, 426
- [8] Stephenson, C. B. & Sanduleak, N.: 1971, Publications of the Warner & Swasey Observatory, 1, 1
- [9] Szalai, T.; 2006: Szoros déli kettőscsillagok fizikai paramétereinek meghatározása, TDKdolgozat, SZTE
- [10] Szalai, T., 2013: Nagy tömegű csillagok végállapotai: szupernóva-robbanásokhoz kötődő porképződés és az LS 5039 gamma-kettős vizsgálata, Ph.D. értekezés, SZTE
- [11] Wright J. T. & Eastman J. D.: 2014, Barycentric Corrections at 1 cm/s for Precise Doppler Velocities, PASP, 126, 838
- [12] https://en.wikipedia.org/wiki/Cross-correlation
- [13] http://astro.u-szeged.hu/oktatas/tembevez.html

Nyilatkozat

Alulírott Kálmán Szilárd, Fizika BSc szakos hallgató (I8L88R), az Egy– és kétvonalas spektroszkópiai kettős rendszerek vizsgálata című szakdolgozat szerzője, fegyelmi felelősségem tudatában kijelentem, hogy a dolgozatom önálló munkám eredménye, saját szellemi termékem, abban a hivatkozások és idézések általános szabályait következetesen alkalmaztam, mások által írt részeket a megfelelő idézés nélkül nem használtam fel.

Szeged,

aláírás